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Abstract. It is described how recent sums of products of two Fibonacci(-type) num-
bers can be computed automatically. More general results (obtained by a computer,
with human guidance) are listed and proved by traditional methods.

1. Introduction

The authors of [3, 2, 6] where all concerned with the evaluation of
n∑
k=1

ua+bkvc+dk,

where uk, vk denote either Fibonacci or Lucas numbers or generalizations of them
(recursions of second order, with some parameters).

The aim of the present note is to demonstrate that these evaluations can be done by a
computer.1 Consequently, longwinded derivations can be replaced by some instructions
for a computer algebra system, and one can get also much more involved sums, not
only consisting of 2 factors, as in the cited papers. All that matters is the existence of
a Binet formula for the numbers involved; giving it to your computer, all that must be
done is to sum some geometric series, which is a piece of cake for your friend. We will
describe the procedure for Fibonacci numbers, but that is no restriction whatsoever; it
is merely done to avoid cluttering the notation.

So we have the classical representation

Fn =
αn − βn

α− β
with α, β =

1±
√

5

2
;

note that αβ = −1.
What is then left for the human user is (provided it is desired!) to rewrite the

outcome of the computers computation which is given in terms of powers of α and β,
in terms of Fibonacci numbers. But this is again automatic, using the formulæ

αn = αFn + Fn−1, βn = −αFn + Fn+1.

Typically, the outcome of these replacements is not æsthetically pleasing, and simpli-
fications can be done using the standard recursion for Fibonacci numbers.
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Using this approach, we computed many more such sums, and we list those that
look attractive in the following section.

2. New Fibonacci summations

We get explicit evaluations of

X(d)
n =

n∑
k=0

d−1∏
j=0

Ftk+λj,

where t is an even number. Cases must be distinguished between t ≡ 0 mod 4 and
t ≡ 2 mod 4, and d even or odd. Thus we get four theorems.

Theorem 1. For t ≡ 0 mod 4 and even d, we have

X(d)
n =

d/2∑
j=1

F2tnj+((d−1)λ+t)jad,j + c · n+ d,

with

ad,j =
1

5d/2Ftj

{
d

d
2
− j

}
λ

×

{
(−1)

d
2
−j if λ is even,

(−1)
( d2−j)(

d
2−j+1)

2 if λ is odd.

Here and in the following we use (for more details see [4, 5])

{
m

k

}
λ

=

m∏
j=1

Fjλ

k∏
j=1

Fjλ ·
m−k∏
j=1

Fjλ

.

Remark. We do not give an explicit expression for the constants c and d, since they
can be recovered from the rest: Assume that we have an identity

A(n) = B(n) + c · n+ d,

then d = A(0) − B(0) and c = A(1) − A(0) − B(1) + B(0). This remark applies also
to the following examples.

Theorem 2. For t ≡ 0 mod 4 and odd d, we have

X(d)
n =

(d−1)/2∑
j=0

Ltn(2j+1)+((d−1)λ+t) 2j+1
2
ad,j + c · n+ d,

where

ad,j =
1

5(d+1)/2
F t(2j+1)

2

{
d

d−1
2
− j

}
λ

×

{
(−1)

d−1
2
−j if λ is even,

(−1)
( d−1

2 −j)( d+1
2 −j)

2 if λ is odd.

Here and in the following, we use Lucas numbers Ln = αn + βn.
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Theorem 3. For t ≡ 2 mod 4 and even d, we have

X(d)
n =

d/2∑
j=1

F2tnj+((d−1)λ+t)jad,j + c · n+ d,

where

ad,j =
1

5d/2F4tj

{
d

d
2
− j

}
λ

×

{
(−1)

d−1
2
−j if λ is even,

(−1)
( d−1

2 −j)( d+1
2 −j)

2 if λ is odd.

Theorem 4. For t ≡ 2 mod 4 and odd d, we have

X(d)
n =

(d−1)/2∑
j=0

Ftn(2j+1)+((d−1)λ+t) 2j+1
2
ad,j + c · n+ d,

where

ad,j =
1

5(d−1)/2
L t

2
(2j+1)

{
d

d−1
2
− j

}
λ

×

{
(−1)

d−1
2
−j if λ is even,

(−1)
( d−1

2 −j)( d+1
2 −j)

2 if λ is odd.

3. Proofs

For fixed t, d, λ, a computer proves the desired identity readily. And, in the first
place, that is the way the identities were found. However, for general parameters, we
must resort to traditional methods.

We write the product
d−1∏
j=0

Fkt+λj

in q-notation:

id(kt−1)+
λd(d−1)

2 q−
d(kt−1)

2
−λd(d−1)

4
(qtk; qλ)d
(1− q)d

.

Here, we set q = β/α and use the notation (x; p)n = (1− x)(1− xp) . . . (1− xpn−1).
We will also use [

N

k

]
λ

=
(qλ; qλ)N

(qλ; qλ)k(qλ; qλ)N−k
.

By the q-binomial theorem (or Rothe’s identity, see [1]) we have

(qtk; qλ)d =
d∑
j=0

[
d

j

]
λ

(−1)jqλ(
j
2)qtkj

and so the product takes the form

d−1∏
j=0

Fkt+λj =
id(kt−1)+

λd(d−1)
2 q−

d(kt−1)
2

−λd(d−1)
4

(1− q)d
d∑
j=0

[
d

j

]
λ

(−1)jqλ(
j
2)qtkj.
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Now we again convert it back into Fibonacci-type form:

d−1∏
j=0

Fkt+λj =
αdkt+

λd(d−1)
2

5d/2

d∑
j=0

{
d

j

}
λ

(−1)j(−1)λ
j(j−1)

2 αj(λ−dλ−2kt).

First, we consider the case d is even to prove Theorems 1 and 3.
We reorganize the sum on j:

d−1∏
j=0

Fkt+λj =
αdkt+

λd(d−1)
2

5d/2

d/2−1∑
j=0

{
d

j

}
λ

(−1)
j(λ(j−1)+2)

2 αj(λ−dλ−2kt)

+
αdkt+

λd(d−1)
2

5d/2

d∑
j=d/2+1

{
d

j

}
λ

(−1)
j(λ(j−1)+2)

2 αj(λ−dλ−2kt) + constant

=
αdkt+

λd(d−1)
2

5d/2

d/2−1∑
j=0

{
d

j

}
λ

(−1)
j(λ(j−1)+2)

2 αj(λ−dλ−2kt)

+
αdkt+

λd(d−1)
2

5d/2

d/2−1∑
j=0

{
d

j

}
λ

(−1)
(d−j)(λ(d−j−1)+2)

2 α(d−j)(λ−dλ−2kt) + constant

=
1

5d/2

d/2−1∑
j=0

{
d

j

}
λ

(−1)
j(λ(j−1)+2)

2 αdkt+
λd(d−1)

2
+j(λ−dλ−2kt)

+
1

5d/2

d/2−1∑
j=0

{
d

j

}
λ

(−1)
j(λ(j−1)+2)

2 βdkt+
λd(d−1)

2
+j(λ−dλ−2kt) + constant

=
1

5d/2

d/2−1∑
j=0

{
d

j

}
λ

(−1)λ
j(j−1)

2
+jL

dkt+
λd(d−1)

2
+j(λ−dλ−2kt)

+ constant

=
1

5d/2

d/2∑
j=1

{
d

d
2
− j

}
λ

(−1)λ
( d2−j)(

d
2−j−1)

2
+ d

2
−jL2ktj+λj(d−1) + constant.

Now we have the formula
n∑
k=0

L4ak+b =
F4an+2a+b

F2a

+ constant, (1)

which is easy to derive using the Binet formula.
Therefore we get by summing on k

n∑
k=0

d−1∏
j=0

Fkt+λj =
1

5d/2

d/2∑
j=1

{
d

d
2
− j

}
λ

(−1)λ
( d2−j)(

d
2−j−1)

2
+ d

2
−jF2tnj+((d−1)λ+t)j

Ftj

+ constant · n+ constant.

A quick check tells us that this is the desired formula for both parities of λ.
This proof works for Theorem 3 as well, since we only needed that t was even.
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In order to prove Theorems 2 and 4, we now assume that d is odd.

d−1∏
j=0

Fkt+λj =
1

5d/2

(d−1)/2∑
j=0

{
d

j

}
λ

(−1)
j(λ(j−1)+2)

2 αdkt+
λd(d−1)

2
+j(λ−dλ−2kt)

+
1

5d/2

d∑
j=(d+1)/2

{
d

j

}
λ

(−1)
j(λ(j−1)+2)

2 αdkt+
λd(d−1)

2
+j(λ−dλ−2kt)

=
1

5d/2

(d−1)/2∑
j=0

{
d

j

}
λ

(−1)
j(λ(j−1)+2)

2 αdkt+
λd(d−1)

2
+j(λ−dλ−2kt)

+
1

5d/2

(d−1)/2∑
j=0

{
d

j

}
λ

(−1)
(d−j)(λ(d−j−1)+2)

2 (−1)dkt+
λd(d−1)

2
+(d−j)(λ−dλ−2kt)

× β−dkt−
λd(d−1)

2
−(d−j)(λ−dλ−2kt)

=
1

5d/2

(d−1)/2∑
j=0

{
d

j

}
λ

(−1)λ
j(j−1)

2
+jαdkt+

λd(d−1)
2

+j(λ−dλ−2kt)

− 1

5d/2

(d−1)/2∑
j=0

{
d

j

}
λ

(−1)λ
j(j−1)

2
+jβdkt+

λd(d−1)
2

+j(λ−dλ−2kt)

=
1

5(d−1)/2

(d−1)/2∑
j=0

{
d

j

}
λ

(−1)λ
j(j−1)

2
+jF

dkt+
λd(d−1)

2
+j(λ−dλ−2kt)

=
1

5(d−1)/2

(d−1)/2∑
j=0

{
d

d−1
2
− j

}
λ

(−1)λ
( d−1

2 −j)( d−1
2 −j−1)

2
+ d−1

2
−jF(2j+1)kt+λ(d−1) 2j+1

2
.

We have
n∑
k=0

F4ak+b =
1

5

L4an+2a+b

F2a

+ constant

and therefore for t ≡ 0 mod 4

n∑
k=0

d−1∏
j=0

Fkt+λj =
1

5(d−1)/2

(d−1)/2∑
j=0

{
d

d−1
2
− j

}
λ

(−1)λ
( d−1

2 −j)( d−1
2 −j−1)

2
+ d−1

2
−j

×
n∑
k=0

F(2j+1)kt+λ(d−1) 2j+1
2

=
1

5(d+1)/2

(d−1)/2∑
j=0

{
d

d−1
2
− j

}
λ

(−1)λ
( d−1

2 −j)( d−1
2 −j−1)

2
+ d−1

2
−j
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×
L(2j+1)tn+(2j+1) t

2
+λ(d−1) 2j+1

2

F(2j+1) t
2

+ constant,

which settles Theorem 2.
We have

n∑
k=0

F2(2a+1)k+b =
F2(2a+1)n+2a+1+b

L2a+1

+ constant

and therefore for t ≡ 2 mod 4

n∑
k=0

d−1∏
j=0

Fkt+λj =
1

5(d−1)/2

(d−1)/2∑
j=0

{
d

d−1
2
− j

}
λ

(−1)λ
( d−1

2 −j)( d−1
2 −j−1)

2
+ d−1

2
−j

×
F(2j+1)nt+(λ(d−1)+t) 2j+1

2

L(2j+1) t
2

+ constant,

which settles Theorem 4.
Thus all formulæ have been proved.

4. Conclusion

We have demonstrated that certain sums over products of Fibonacci numbers (or
similar ones) can be evaluated by a computer. Doing so, new identities were discovered,
were each individual one can be proved by a computer, but for the general families, we
needed human proofs.

The four theorems we gave are in terms of Fibonacci numbers. Of course, all this
can be done mutatis mutandis for Lucas numbers and similar expressions. We do not
encourage other authors to write single papers that contain just 4 similar theorems for
Lucas numbers since, once the path has been paved, there isn’t much intellectual effort
in doing this.
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