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Flajolet’s research on the register function of binary trees as published in the pre-
liminary [11] and the final article [12] was his first work in the analysis of algorithms.
He was lucky to find this problem, as it is nontrivial but manageable, and one can
learn/develop a lot while working on it.

It deals with binary trees (counted by Catalan numbers) and the parameter reg,
which associates to each binary tree (which is used to code an arithmetic expression,
with data in the leaves and operators in the internal nodes) the minimal number of
extra registers that is needed to evaluate the tree. The optimal strategy is to evaluate
difficult subtrees first, and use one register to keep its value, which does not hurt, if
the other subtree requires less registers. If both subtrees are equally difficult, then one
more register is used, compared to the requirements of the subtrees.

There is a recursive description of this function: reg(�) = 0, and if tree t has subtrees
t1 and t2, then

reg(t) =

{
max{reg(t1), reg(t2)} if reg(t1) 6= reg(t2),

1 + reg(t1) otherwise.

The register function is also known as Horton-Strahler numbers in the study of the
complexity of river networks. The original papers are [13, 21]; since then, many papers
have been written about these numbers, but there is no space here to collect them all;
a fair amount of them is cited in [16].

The recursive description attaches numbers to the nodes, starting with 0’s at the
leaves and then going up; the number appearing at the root is the register function of
the tree.
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Let Rp denote the family of trees with register function = p, then one gets immedi-
ately from the recursive definition:

Rp =
Rp−1 Rp−1

+
Rp

∑
j<p

Rj

+ ∑
j<p

Rj Rp

Later in life, Flajolet would write such symbolic equations in a linearized form.
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In terms of generating functions, these equations read as

Rp(z) = zR2
p−1(z) + 2zRp(z)

∑
j<p

Rj(z);

the variable z is used to mark the size (i. e., the number of internal nodes) of the binary
tree.

Amazingly, this can be solved explicitly! First, a trigonometric substitution was
used, and this led to Chebyshev polynomials. However, eventually the substitution

z =
u

(1 + u)2

that de Bruijn, Knuth, and Rice [2] also used, produced the nice expression

Rp(z) =
1− u2

u

u2p

1− u2p+1 .

Of course, once this is known, it can be proved by induction, using the recursive formula.
Thanks to the trigonometric representation of Rp(z), explicit forms for [zn]Rp(z),

the number of binary trees of size n with register function = p, are available.
Reading off coefficients, the average number of registers requires to evaluate∑

k≥1

v2(k)

[(
2n

n+ 1− k

)
− 2

(
2n

n− k

)
+

(
2n

n− 1− k

)]
(1)

with v2(k) being the number of trailing zeroes in the binary representation of k. The
main result is: The average number of registers to evaluate a binary tree with n nodes
is asymptotically given by

log4 n+D(log4 n) + o(1)

with

D(x) =
∑
k∈Z

dke
2πikx

and

d0 =
1

2
− γ

2 log 2
− 1

log 2
+ log2 π,

dk =
1

log 2
ζ(χk)Γ(χk

2
)(χk − 1), k 6= 0,

with χk = 2πik
log 2

. The classical Gamma- and zeta-functions appear here. Because of the

fast decay of the Gamma-function along the imaginary axis, the Fourier coefficients
become small very quickly, and the periodic function D(x) (oscillating around the
value d0) has small amplitude and is continuous; details are in the papers. This is the
first periodic oscillation (given as a Fourier series) that appeared in Flajolet’s work,
with many more to follow.

To get this asymptotic equivalent, there are (at least) three methods, and Flajolet
used (and developed) them all in his work.

• An elementary approach that uses Delange’s [3] result about the sum-of-digits
function. This is featured in [12].
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• Approximation of the terms in the sum, and using the Mellin transform to
evaluate the resulting series. This appears already in Flajolet’s thesis [6]. He
often mentioned that he learnt the technique from Rainer Kemp. A special case
of the approach appears in Knuth [15] under the nickname Gamma-function
method.1,2

• Mellin transform, directly on the level of generating functions, together with
singularity analysis of generating functions.

Let us describe these methods in more detail. We start with the elementary approach.
Summation leads to ∑

j≤k

v2(j) = k − S2(k),

where S2(k) is the number of ones in the binary expansion of k (sum of digits). It is
known that ∑

m<n

S2(m) =
n log2 n

2
+ nF (log2 n).

This was shown by Delange [3] and was apparently mentioned to Flajolet directly by
Delange. The periodic function F (t) is fully explicit in terms of Fourier coefficients.

To use this for the evaluation of (1), one has to use partial summation (Abel’s
summation) twice. A negative side effect of this is that the second difference of binomial
coefficients becomes a fourth difference. But this is no problem: approximations are
available (Hermite polynomials):

∆r

(
2n
n+k

)(
2n
n

) ∼ e−k
2/nHr

( k√
n

) 1

nr/2
.

It seems that Flajolet found this approximation by comparing the sum
∑

k≥1 e
−k2/n and

its differences with the corresponding integral and its derivatives. This approximation
gives the main term, and this is enough for the research on the register function. In [19],
it is described how lower order terms can be produced if needed. Doing all this, one is
left with the asymptotic evaluation (for n→∞) of∑

k≥1

[
k log2 k

2
+ kF (log2 k)

]
H4

( k√
n

)
e−k

2/n.

The asymptotic evaluation of this is manageable (Riemann sums, controlling the error),
but it is a bit dry. Nevertheless, it is completely elementary!

Remark. To solve explicitly for Rp is somewhat crucial. Auber et al. [1] suggested
a generalisation of the register function to t-ary trees, where no explicit formula is
available, and Drmota and Prodinger [4] could only identify the leading log4 n term!
This generalisation interprets an internal node of outdegree t as a t-ary operation, and
the recursive rule of the register function is accordingly defined as reg(T ) = max{c1, c2+

1Rainer Kemp solved the asymptotics of the register function independently in [14]. This important
pioneer of the analysis of algorithms in Europe died in 2004, barely 55 years old. Among the three
people who started the series of conferences on the analysis of algorithms in Dagstuhl, Germany, there
is thus only the writer of these lines still around.

2Some time later, another paper appeared [17], which only had the main term log4 n but no oscil-
lations; the authors were unaware of the papers [12, 14].
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1, . . . , ct + t− 1}, where c1 ≥ c2 ≥ · · · ≥ ct is the ordered list of the register functions
of the t subtrees. The leading term log4 n is independent of t. —

Delange’s paper was extended and generalized into many different directions by many
people.

Now we describe the second method: After Flajolet learnt about the Mellin trans-
form, he attacked a sum like ∑

k≥1

v2(k)H2(kt)e
−k2t2

(with t = 1/
√
n ) directly. This goes well, since v2(2k + 1) = 0 and v2(2k) = 1 + v2(k)

and ∑
k≥1

v2(k)

ks
=

ζ(s)

2s − 1
.

The sum is what he would later call a harmonic sum, and its Mellin transform splits.
One factor is the Dirichlet series just mentioned, the other one a simple variation of
the Gamma function.

And now to the third method: Flajolet became familiar with singularity analysis
of generating functions through Odlyzko’s pioneering paper [18] (written in 1978).
Around this time, a fruitful collaboration between Flajolet and Odlyzko has started
which culminated in the highly cited paper [8]. Before the name singularity analysis
became really popular, Flajolet himself liked to say “à la Odlyzko”, as is apparent in
[9] and other writings. After that, he would consider

E(z) =
∑
p≥1

pRp(z) =
∑
p≥1

p
1− u2

u

u2p

1− u2p+1

and study it around the singularity z = 1
4

(equivalently u = 1) with the Mellin trans-
form!

But now the Mellin transform is used directly on the generating function, where
a substitution u = e−t is used. In terms of singularity analysis, one must study the
behaviour around z = 1

4
or equivalently u ∼ 1 or t ∼ 0. (The notation ‘∼’ refers to a

“camembert-shaped” neighbourhood; the technical details can be taken from [8].) The
essential part is then∑

p≥1

p
e−t2

p

1− e−t2p+1 =
∑

p≥1, λ≥0

pe−t2
p(1+2λ) =

∑
n≥1

v2(n)e−tn.

This is a harmonic sum!
A local expansion around t ∼ 0 is thus found. It translates; since

√
1− 4z ∼ 2t

one finds with

K = −1 + log2 π +
1

2
+

γ

log 2
, r =

√
1− 4z and ck =

1

log 2
ζ(χk)Γ(χk),

that
E(z) = 2r log2 r + 2(K + 1)r + 4

∑
k 6=0

ckr
1−χk + · · · .

This can then be translated into an asymptotic expansion of the coefficients.
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This approach is exactly the one used in [9] where the register function is studied
in the context of unary-binary trees. Such trees can be used to model not only binary
operations but unary operations as well. For obvious reasons, the register function does
not increase when going up to a unary node. The symbolic equation for the objects
under consideration is now this (arbitrary non-negative weights have been introduced):

B̂ = + c2·
B̂ B̂B̂

c1·c0 ·� +

This family can be obtained from the family B of binary trees by means of substitutions:

( )∗
→

( )∗
→

Let B(z) denote the generating function of binary trees (Catalan numbers). Then
the generating function yB(yz) marks internal nodes with the variable y and leaves
with the variable z. The two substitutions mean on the level of generating functions

y → c0y

1− c1z
and z → c2z

1− c1z
.

Since the register function is not changed by performing these substitutions, the new
function R̂p is obtained from the already known Rp, thanks to these substitutions. For
the size of unary-binary trees there are now two meaningful options: One can count
both, leaves and internal nodes, or, count only internal nodes.

Eventually one gets for the average register function of unary-binary trees of size n
a formula

log4 n+D(log4 n− constant)− constant,

where the constant and periodic function is described in the paper.

The algorithm odd-even merge was analyzed by R. Sedgewick in [20] by means of
the Mellin transform (the second method as discussed above). Flajolet wanted to show
that the asymptotic expansion can also be obtained in an elementary fashion (akin
to the first method from above). He submitted indeed “A note on Gray code and
odd-even merge”; this original submission might still exist in his drawers. Published is
however a much longer paper with the additional author L. Ramshaw [10].

To achieve his goal, Delange’s analysis had to be carried over first to the instance
of the Gray code, which is a representation of integers with digits 0 and 1, where the
pattern of the last digit is: 0110 0110 0110 . . . , of the penultimate digit: 00111100
00111100 00111100 . . . , and so on. Hence there is an explicit formula for the k-th digit
of the Gray code representation of the integer n:

ak(n) =

⌊
n

2k+2
+

3

4

⌋
−
⌊

n

2k+2
+

1

4

⌋
.

A Delange type approach works indeed, since⌊
n

2k+2
+

3

4

⌋
=

∫ n+1

n

⌊
t

2k+2
+

3

4

⌋
dt.
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The quantity that Sedgewick studied in his paper on odd-even merge is

1 + (n+ 1)
∑
i≥1

β(i)

(
2n

n+i+2

)
− 3
(

2n
n+i+1

)
+ 3
(

2n
n+i

)
−
(

2n
n+i−1

)(
2n
n

) ,

with β(i) =
∑

k ak(i) being the number of ones in the Gray code representation of i.
One application of partial summation to this brings indeed the summatory function

of β(i) into the game, for which there is now an explicit expression available, thanks
to the Delange approach. The rest is as in the instance of the register function.

The third approach is also feasible in the present instance; one would have to perform
partial summation in the other direction, which leads to the sequence β(i)− β(i− 1);
this sequence has a simple explicit Dirichlet generating function, which is expressible
in terms of the Hurwitz zeta function.

In a paper with coauthors Grabner, Kirschenhofer, Prodinger, Tichy [7], he used the
Mellin-Perron technique to deal with digital sums, but that is described in a different
place in this volume.

The paper [5] does not contain new material; it describes the elementary approach
to the register function and the odd-even merge (in French).
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Mathématique, 21:31–47, 1975.

[4] M. Drmota and H. Prodinger. The register function for t-ary trees. ACM Trans. Algorithms,
2(3):318–334, 2006.

[5] P. Flajolet. Deux problèmes d’analyse d’algorithmes. Séminaire Delange-Pisot-Poitou. Théorie
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les arbres. In Summer School Ile de Ré, English version in EATCS Bulletin 47 (1992), 180–199,
1983.

[20] R. Sedgewick. Data movement in odd-even merging. SIAM J. Comput., 7(3):239–272, 1978.
[21] A. N. Strahler. Hypsomic analysis of erosional topography. Bulletin Geological Society of America,

63:1117–1142, 1952.

Helmut Prodinger, Mathematics Department, Stellenbosch University, 7602 Stel-
lenbosch, South Africa.

E-mail address: hproding@sun.ac.za


