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FURTHER RESULTS ON DIGITAL SEARCH TREES 

Peter KIRSCHENHOFER and Helmut PRODINGER 

Institut fiir Algebra und Diskrete Mathematik, Technische Universitiit Wien, A-l 040 Vienna, Austria 

Abstract. In this paper distribution results are proved on the cost of insertion in digital search 

trees, (binary) tries and Patricia tries. A method from the calculus of finite differences is used to 

achieve asymptotic results. 

1. Introduction 

An important class of algorithms in computer science is concerned with storing 

and searching for data in well-designed data structures, i.e., “digital search trees”, 

“tries” (from information retrieval) and “Patricia tries” (from practical algorithm 

to retrieve information coded in alphanumeric). In the following we will present 

a short description of these data structures; for an extensive presentation we refer 

to [5,6]. 

Our main purpose in this paper is the asymptotic analysis of the variances of 

characteristic parameters of these data structures. 

Considering digital search trees, we assume that each item has a key being an 

infinite sequence of 0 and 1, where 0 means “go left” and 1 means “go right”, until 

an empty space is available for the insertion of the item (cf. Fig. 1): 

A: OlO... 

B: llO... 

c: ill... 

D: OOl... 

E: OOO... 

Note that the order in which the keys are inserted is relevant. 

(Binary) tries follow the same idea, but the items 

makes the relative order of insertion irrelevant. see 

are stored in the leaves, which 

Fig. 2. 
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Fig. 1. 
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Fig. 2. 

Patricia tries are constructed from tries by collapsing one-way branches on internal 

nodes as shown in Fig. 3. 

In all three cases our parameter of interest is the cost of insertion of data. 

The expectations of these parameters were determined by Knuth [2] by means 

of the Mellin integral transform. Flajolet and Sedgewick gave alternative derivations 

in [l]; they use a rather simple but very useful formula due to S.O. Rice making 

the whole story easier and more transparent (compare Lemma 2.1). 

For the computation of the variances, different probabilistic models are meaningful 

which coincide for the expectations: 

One possibility is to assume the uniform distribution on the set of possible keys 

(i.e., O-l sequences); work on this is in progress together with W. Szpankowski. 

Another possibility is to base the model on trees rather than sequences. We will 

choose this approach here, whence we have to go into more details. 

Let htG’(z) be the generating function with [z”]hE’(z) (i.e., the coefficient of zk 

in ht$(z)) the expected number of external nodes at level k in the family of tries 

built from N records with keys from random bit streams. It should be emphasized 

that the expectation of the insertion cost is (h[N”)‘( l)/ N. A similar interpretation 

holds for Patricia tries and digital search trees (where, in the latter instance, the 

internal nodes have to be counted), with the obvious notations h’:‘(z) respectively 

h[N”‘(z) for the corresponding generating functions. 

Our model for the computation of the variance is now to consider abstract 

averaging trees the kth level of which contains [zk]hN(z) nodes. Within this 

framework the variance is classically given by 

Fig. 3. 
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In Sections 2 to 4 of this paper we deal with the variances in all three cases; this 

quantity was never studied up to now. We use Rice’s (or Flajolet’s and Sedgewick’s) 

method since we feel that the original approach of Knuth might be too complicated 

and less transparent (even though we recently learned from W. Szpankowski that 

a Mellin transform approach might be feasible; compare [S, 61). 

Since it is needed in the further considerations, we cite the following result. 

Theorem 1.1 (Knuth; Flajolet, Sedgewick [3, 11). The expected value of the insertion 

cost for a trie respectively a Patricia trie respectively a digital search tree built from N 

records with keys from random bit streams is 

log, N+- ’ +l+SrT1(logz N)+O(N-‘), 
log2 2 

respectively 

’ log, N +- +?+ GLpl(log, N) +0( N-l), 
log2 2 

respectively 

log* N +- ‘- ’ +I- a + GrD1(logz N) + 0( N-l’*). 
log2 2 

Here y is Euler’s constant; S[“(x) = S[“(x) and SC”‘(x) are periodic functions with 

period 1 and very small amplitude: 

8rD’( x) = kk :k+,, r(-@k) ezkTi~’ 
= / 

with wk = 1+2kri/log 2; LY =Cka, 1/(2k - 1) = 1.606695.. . . 

So the averages are of order log N. 

In Sections 2 to 4 we will prove the following result on the variances, which 

shows that they are of order 1. 

Theorem 1.2. The variance is asymptotic to, in the case of 

[T] ( Tries ) : 

L+ Tr 
2 

-+ qlT’(log2 N), 
12 610g22 

[P] (Patricia tries): 

2 

L+“-_. 2 

12 610g22 log2 .Z, n(2” - 1) 
(-‘)“-’ + a’P1(log2 N) 
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[D] (Digital search trees): 

2 

l+2L- 1 

12 6 log’ 2+logz 2 
--o-p+w [D’(log* N) 

with CY from Theorem 1.1, p =Ckal 1/(2k - 1)2, and the periodic functions 

w[T’(X) = - ,,i2 2 k;, (~(-wk)-wk~‘(-wk)-ywk~(-wk)) e2kmix-(‘[T’(X))2? 

g[P’(x) = w[T’(X)+- 1,z 2 k;, wkr(bk)(l -6) e2k?rix 

with 

2kni/log 2 
&=z( >& 

na, n 

and 

dDl(x) = kk;, (-T’(-wk)+(i-r)T(-Wk)) e2kmiX-(8CD’(X))2. 

Ignoring the small fluctuations we have the following corollary. 

Corollary 1.3. The variances are roughly 

D-1 3.5070.. .) [P] = 1.0000.. . ) [D] 2.8443 . . . . 

Concerning these numerical values we mention in passing that by means of 

properties of modular functions it can be proved that the constant in instance [P] 

differs from 1 by less than lo-‘*; the constant in instance [D] is very close to 

L+- - 1 1 

24 log22+210g2’ 

These results can be found in [2]. 

In the last section we will consider the distribution of various types of nodes in 

the three types of data structures. This is a continuation of the investigations of [ 11, 

where Flajolet and Sedgewick have solved an open problem of Knuth, namely to 

determine the expected number of internal nodes 0 of the type 

in digital search trees built from N records. 



Further results on digital search trees 147 

2. Tries 

Let h,(z) be the generating function mentioned in the introduction (in this section 

always referring to tries). From [3] we know the recursion 

Z’ Irk(Z), NZ2, 

We need some more generating functions: 

R(z)= c MOM, 
N=O 

S(z)= c G(l)&, 
IV>,, 

V(z)=ep’.R(z)= C vN$, 
N-0 

W(z)=e-'.S(z)= C wN&. 
NaO 

From (1) we have 

(hZ(l)+2h;(l)), NaO, 

and thus 

S(z) = 2S(iz) e”‘+ 4R (tz) e”‘, 

respectively 

w(z)=2w(;z)+4v(;z). 

From [l] we have 

zi 
N(-l)N 

N=- 1_21-N 9 Na2.9 

so that 

W 

2.2’-J”. N. (_1)N 

N= 
(1 -2’PN)2 

, Nz2; w,=w,=o. 

By S(z) = ez * W(z), we get 

h;(l)= c 
kz2 

2. 2’mk . k 

(1_2’_k)2. (2) 

The asymptotic evaluation of this alternating sum is now attacked by “Rice’s method” 

using a classical formula for finite differences [4]. 
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Lemma 2.1 (Norlund [4]). Let C be a curve surrounding the points 2,. . . , N and 

f(z) be analytic within C. Then 

[N; zlf(z) dz 
C 

with 

Applying the lemma to expression (2) and moving the contour of integration to 

the left of the line with Re z = 1 (compare [l] for technical details), we obtain 

h;(l)- c Res([N; z] f(z); z=mk). (3) 
ktl 

In order to determine the residues, we have to work out the local expansions of 

[N;z]f(z)=[N;zl* ,:lr:q (4) 

about the poles CO,,= 1 (triple) and wk, k # 0 (double). For this purpose we manage 

to get a list of local expansions of the “ingredients”: With u = z - 1 and L = log 2 

we have 

[N; z]-~(l+u(H,_,-l)+u2(1-H~-l+~H~~,+~H~~,)) 

(HN respectively HN (2) denoting harmonic numbers) 

2’-’ - 1 - Lu -tfLV, 

1 
~++;Lu+&LV), I -21-i 

1 
-++Lu+&L’d). (l-21-72 LZu2 

The expansions in u = z - wk read 

[N; z]--Nwh[r(--Ok)++-r’(--Wk)+r(-Wk) log N)], 

2’_’ -1-Lu, 

1 ---A(1 +$Lu), I_ 21-2 

(5) 

1 -+(I fLu). 
(1 -21P’)2 L2u2 
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Calculating the residues of (4) we obtain, by (3), 

ha(l) -+z:~,+H~L,)-kN 

+1N c NwL-1 
L’ h#O 

(T(-w,)+w,(-T’(-w,)+r(-ok) log N)). 

Inserting the asymptotic expansion of the harmonic numbers and using the 

asymptotic equivalents for h’,( 1) from Theorem 1.1, we get Theorem 1.2 [T]. 

3. Patricia tries 

We keep the notation of Section 2, but now always referring to Patricia tries. The 

recurrence relation for hN (z) is now 

zh,(z)-21pN(z-l)hN(z), N>2; 

The functional equation for W(z) reads 

W(z) = 2 W($z) + 4( 1 -e-“‘) V($z) 

where [l] 

h,(z) = h,(z) = 1. (7) 

(8) 

Hence (N 2 2), 

2N(-1)N 2N(-1)N 
w - N-(2N-r_l)2- 2Np’Ll no, c (“,Il)&. 

NOW h’;(l) = Cka2 (f)w, and we may apply Lemma 2.1 with 

22 22 z-l 1 _~ 
f(z)=(25m1_l)z 2=-‘-l no, n 

XC ) 2” - 1’ 

We may now use the local expansions from (5) together with 

z-l I( > 1 

n 2”-1^-U’ c (-l)“_’ for u=z-l+O 
na, n-_, n(2”-1) 

to obtain 

Res([N; z]f(z); z = 1) 

= N (log2 N)‘+2710g2 N+p 
( 

Y-L Y2 + &r2 

L2 

-p; c (-l)“_’ 

) na, n(2”-1) . 
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Next we use the local expansions from (6) and (z + wk, k # 0) 

Thus we obtain 

Res([N; z]f(z); z = wk) 

=2N +o,)+w,(-r’(-o,)+T(w,) log N)) 

-+wkI.(-ok)~ (l+tk) e2kmi’ogzN. 
> 

The sum of the residues yields the asymptotic equivalent for h;(l) and together 

with Theorem 1.1 we obtain Theorem 1.2 [PI. 

4. Digital search trees 

From Knuth [3, p. 4961 we have ([zklhN( ) z now referring to internal nodes) 

hN(z)=,& k+l ( N )(-l)kOJ<k(l-;) 

so that, after some easy manipulations, 

Ilk(l)=2 c 
kz2 

with (compare [l]) 

QN = Q(1)IQ(2-N) and Q(z) = n 
jai 

and 

T(k)= C -!-- 
Isjs_k 2’ - 1. 

The appropriate extension of T(k) to @ is 

1 
T(z) = (Y - 1 ___ 

2 z+j j>l -1’ 

For the asymptotic evaluation of h:(l) we use again Lemma 2.1 with 

f(z) = -2. Q(l) 
Q(2-=+*) 

* T(z-2). 

(9) 

(10) 

(11) 
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We start with the local expansion for u = z - 1 + 0: 

1 1 1 

Q(2-“+‘) - 1-2-u ,G, 1-2-u-k. 

Now we have the following general rule for the derivatives of a product of the form 

F(u)= n l 
k=l 1 -h(u) 

: 

F’(a) 
F(a) 

c A(a) 
ksl l-h(a)’ 

We apply these formulae with fk(u) = 2m”Pk to get F’(O)/F(O) = -L . a and 

F”(O)/F(O) = L2((u2+a +p) with 

1 1 
cX= c 7 and p = 1 ~ 

k,-_,2 -1 kz, (2k - 1)2 

From this we conclude for u+O 

Q(1) 
QG-“1 

-1-L.a.u+$* L2’(a2+a+p)U2. 

We further have 

1 
-+(I +;Lu+&L2u*), 
l-2_” 

so that 

Q(1) 1 Q(1) 1 =-. ~--_(1+L(f-a)u+~L2(c2+p+~)U*). 
Q(2-“+I) l-2-” Q(2-“) Lu 

Now we expand T( u - 1) for u + 0: 

--~(l-!rlr+AL2u2)+a-k~,&+Lk~,&u 
> 

= -h+f+ L(-&+a+p)u. 
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Combining these results we get 

Res([N; z]f(z); z = 1) 

=2N 
( 

$r2-& -$ -&+;(I - HNp,) 

+$(I - HNpl ++H:_, +$H$$,) 
> 

. 

The expansions for u = z - wk + 0 read 

Q(l) Q(l) 
Q(2-u-?kni/L)=Q(2-u)-1pL' ff * U, 

1 1 
l (l+$Lu), =-IcI- 

I _2pu-2k?ri/L I -2-u L. u 

.-I+?) = T(u_l)_-A+$. 

Thus we find 

c Res([N; zlf(z); z = wk) 
k#O 

-(log N-T(-co,)-T’(-co,)-Ld(-wk)) 

=2N(log2 N-a)GLD1(log2 N) -$k;o r’(-wk) eZkTilogzN. 

From these expansions Theorem 1.2 [D] follows immediately. 

5. Distribution of various types of nodes 

In solving an open problem due to Knuth, Flajolet and Sedgewick [l] have 

ID1 counted the average number A, o f nodes with both sons external nodes 

in digital search trees built from N records with keys from random bit streams. 

Theorem 5.1 (Flajolet and Sedgewick [ 11) 

A[N”‘-- N. (p + dD1(10g2 N)) 

with 
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and 

P’(x) = 

The corresponding averages B[N”’ and C[,“’ of internal nodes 0 of type 

A 
respectively 

6% 

are then related to A’:] by the relations 

2A[,D1 + 2B[,“’ = N + 1 

(enumerating leaves) and 

A[;‘+ 2 B[N”] + C[,“’ = N 

(enumerating internal nodes) so that we have the following corollary. 

Corollary 5.2. BL,“’ - $N. (1 -p - 7tD1(logz N)) and C[,D’ - A[,“‘. 

Now we turn our attention to tries built from N records and the averages AK’, 

B[,“, C[,” and D [,‘I of internal nodes 0 of type 

A, A, A respectively \. 

The average I, ofthe total number of internal nodes is, implicitly, given in [3, p. 4941: 

1, 

We have the following relations 

2A’,T’+2B’,‘= N (enumerating leaves), 

2AL;‘+2B’,T’+2D[~‘=lN+1 (enumerating leaves of the 

extended binary tree), 

A’,‘+2Bt;‘+ C[,T’+2D’;‘= I N (enumerating internal nodes). 

Thus we have 

B[,’ = $N _ A’;‘, C[r’ = A[;‘_ 1 
N 9 

Dr,‘=+(lN+l- N). 

For A[:’ we have the recurrence relation 

(AkT’+ A[,“,), N 2 3, 

(12) 

(13) 

(14) 
A[TI = A[TI = () 0 I 7 

AIT xz 1. 
2 
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Using generating functions as before 

and Rice’s method can be applied to get the last theorem. 

Theorem 5.3 

A[,” 
N _- 

4log2 
1-t 1 wk(wk-l)r(-wk) e2kTi’og2N . 

k#O 

The corresponding averages for Patricia tries are A[N” = A[,], BE1 = BE1 and 
C[,‘l= C[,T’ (@I= O!) because of their construction from tries. 
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