Counting Palindromes According to r-Runs of Ones

Using Generating Functions

Helmut Prodinger
Department of Mathematics
Stellenbosch University
7602 Stellenbosch
South Africa
hproding@sun.ac.za

Abstract

Generating functions are derived for the enumeration of all palindromic binary strings of length n having only runs of 1’s of length $\leq r$. It is demonstrated how one can get asymptotic expressions for fixed r and $n \to \infty$. Eventually, r is treated as a random variable and an asymptotic equivalent for the largest run of 1’s in binary palindromes is derived.

1 Enumeration

In the recent paper [3] the interest was in words over the alphabet \{0, 1\} which are palindromes and have runs of 1’s of bounded length. We firmly believe that generating functions are the most appropriate tool here, and since they were not used in [3], we present this natural approach and show as well how one can deal with the case that the maximal 1-run length is treated as a random variable. It is worthwhile to note that all our methods can be found in [1].

Let us start with palindromes of even length; they are given as ww^R, with a reversed copy of w attached to w. In unrestricted words, the following factorization is appropriate:

$$(0 + 1)^* = (1^*0)^*1^*.$$
Here, we used the ∗-operation, common in the study of formal languages, so \(L^* \) denotes all words that can be formed from concatenating words taken from \(L \) in all possible ways. In [1], the notation \(\text{SEQ}(L) \) is mostly used, describing all \(\text{SEquences} \) (aka words), formed from \(L \). Now, the mentioned factorization is a very common one for binary words. Each word is (uniquely) decomposed according to each appearance of the letter 0; between them, there are runs (possibly empty) of the letter 1. If a word has \(s \) letters 0, then there are \(s + 1 \) such runs of 1’s. In terms of generating functions, since the transition \(A \to A^* \) means \(f \to \frac{1}{1-f} \), the factorization reads as

\[
\frac{1}{1 - 2z} = \frac{1}{1 - \frac{z}{1-z}} \frac{1}{1 - z}.
\]

This factorization can immediately be generalized to the instance when the 1-runs should not exceed the parameter \(r \). Then we first consider the set of restricted runs

\[
1^{\leq r} = \{\varepsilon, 1, 11, \ldots, 1^r\},
\]

which translates into

\[
1 + z + \cdots + z^r = \frac{1 - z^{r+1}}{1 - z}.
\]

Then we get the formal expression

\[
(1^{\leq r} 0)^* 1^{\leq r},
\]

which translates into

\[
\frac{1}{1 - \frac{z(1 - z^{r+1})}{1 - z}} \frac{1 - z^{r+1}}{1 - z} = \frac{1 - z^{r+1}}{1 - 2z + z^{r+2}}.
\]

Now, going to palindromes of even length, the last group of ones must be bounded by \(\lfloor \frac{r}{2} \rfloor \). So a syntactic description of palindromes of even length with bounded 1-runs is

\[
(1^{\leq r} 0)^* 1^{\leq \lfloor \frac{r}{2} \rfloor};
\]

this describes the first half of the word only. From this we go immediately to generating functions, by replacing both letters by a variable \(z \). In this way, we count half of the length of the palindromes of even length. If one wants the full length, one must replace \(z \) by \(z^2 \). So we get

\[
\frac{1}{1 - z} \frac{1 - z^{\lfloor \frac{r}{2} \rfloor + 1}}{1 - z} = \frac{1 - z^{\lfloor \frac{r}{2} \rfloor + 1}}{1 - 2z + z^{r+2}}.
\]

(1)

One can read off the coefficient of \(z^n \) in the power series expansion of this expression, which leads to a clumsy expression:

Set

\[
a_{n,r} = [z^n] \frac{1}{1 - 2z + z^r},
\]

2
then
\[a_{n,r} - 2a_{n-1,r} + a_{n-r,r} = 0, \]
and initial conditions \(a_{n,r} = 2^n \) for \(n < r \).

Then the number of palindromes of even length \(2n \) with all 1-runs \(\leq r \) is given by
\[[z^n] \frac{1 - z^{\lceil \frac{r}{2} \rceil} + 1}{1 - 2z + z^{r+2}} = a_{n,r+2} - a_{n-\lfloor \frac{r}{2} \rfloor -1,r+2}. \]

We can alternatively express the coefficients in (1) using the higher order Fibonacci numbers, as it was done in [3]: Consider \(U_{n,r} = U_{n-1,r} + \cdots + U_{n-r,r} \) for \(n \geq r \), with initial values \(U_{0,r} = \cdots = U_{r-2,r} = 0, U_{r-1,r} = 1. \) Then
\[\sum_{n \geq 0} U_{n,r} z^n = \frac{z^{r-1}}{1 - (z^r + \cdots + z)} = \frac{z^{r-1}}{1 - z \frac{1 - z^r}{1-z}} = \frac{z^{r-1}(1-z)}{1 - 2z + z^{r+1}}. \]

Further,
\[\sum_{n \geq 0} (U_{0,r} + \cdots + U_{n,r}) z^n = \frac{z^{r-1}}{1 - 2z + z^{r+1}}, \]
or
\[\sum_{k=0}^{n+r} U_{k,r+1} = [z^n] \frac{1}{1 - 2z + z^{r+2}}. \]

Consequently
\[[z^n] \frac{1 - z^{\lceil \frac{r}{2} \rceil} + 1}{1 - 2z + z^{r+2}} = [z^n] \frac{1}{1 - 2z + z^{r+2}} - [z^{n-\lfloor \frac{r}{2} \rfloor} \frac{1}{1 - 2z + z^{r+2}}
\[= \sum_{k=0}^{n+r} U_{k,r+1} - \sum_{k=0}^{n-\lfloor \frac{r}{2} \rfloor} U_{k,r+1}
\[= \sum_{k=n-\lfloor \frac{r}{2} \rfloor}^{n+r} U_{k,r+1}. \]

This is the expression given in [3] once one changes the index of summation. Note that \(r - \lfloor \frac{r}{2} \rfloor = \lceil \frac{r}{2} \rceil \).

Now we move to palindromes of odd length with middle letter 1: \(w1w^R \). Then \(w \) is described by
\[(1^{\leq r})^*1^{\leq \lfloor \frac{r-1}{2} \rfloor}. \]

In this way, the last group of ones plus the middle 1 plus the first group of ones of the reversed word is still \(\leq r \) as it should.

The corresponding generating function is
\[\frac{1 - z^{\lceil \frac{r-1}{2} \rceil} + 1}{1 - 2z + z^{r+2}}. \]
and the coefficient of z^n (counting palindromes of odd length $2n + 1$ with middle letter 1) is

$$a_{n,r+2} - a_{n-\lfloor \frac{r-1}{2} \rfloor-1,r+2}.$$

Again, we can alternatively express the corresponding number by higher order Fibonacci numbers:

$$[z^n] \frac{1 - z^{\lfloor \frac{r+1}{2} \rfloor + 1}}{1 - 2z + z^{r+2}} = \left[z^n \right] \frac{1}{1 - 2z + z^{r+2}} - \left[z^{n-\lfloor \frac{r-1}{2} \rfloor-1} \right] \frac{1}{1 - 2z + z^{r+2}}$$

$$= \sum_{k=0}^{n+r} U_{k,r+1} - \sum_{k=0}^{n-\lfloor \frac{r-1}{2} \rfloor} U_{k,r+1}$$

$$= \sum_{k=n-\lfloor \frac{r+1}{2} \rfloor}^{n+r} U_{k,r+1}.$$

Note that $r - \lfloor \frac{r-1}{2} \rfloor = \lfloor \frac{r}{2} \rfloor + 1$.

Finally we move to palindromes of odd length with middle letter 0: $w0w^R$. Then we have

$$(1^{\leq r}0)^*1^{\leq r},$$

since the middle 0 interrupts the last run of ones of the first group. The corresponding generating function is

$$\frac{1 - z^{r+1}}{1 - 2z + z^{r+2}},$$

where again the coefficient of z^n refers to a palindrome of length $2n + 1$ with middle 0.

Explicitly we get

$$[z^n] \frac{1 - z^{r+1}}{1 - 2z + z^{r+2}} = a_{n,r+2} - a_{n-\lfloor \frac{r}{2} \rfloor,r+2}.$$

In terms of higher order Fibonacci numbers, this reads

$$[z^n] \frac{1 - z^{r+1}}{1 - 2z + z^{r+2}} = \sum_{k=0}^{n+r} U_{k,r+1} - \sum_{k=0}^{n-\lfloor \frac{r}{2} \rfloor} U_{k,r+1}$$

$$= \sum_{k=n}^{n+r} U_{k,r+1}.$$

2 Asymptotics

We refer to the paper [2] which might be the first to consider asymptotics for words of restricted runs. The recent paper [4] has many examples of this type. Here, we only consider the key steps and refer for error bounds to the cited literature.
One has to study the dominant zero of the denominator, denoted by \(\rho \), which is close to \(\frac{1}{2} \) when \(r \) gets large (no restriction). From

\[
1 - 2\rho + \rho^{r+2} = 0
\]

we infer

\[
\rho = \frac{1}{2} + \frac{1}{2} \rho^{r+2} \approx \frac{1}{2} + \frac{1}{2^{r+3}}.
\]

This procedure is called \textit{bootstrapping}. We also need the constant \(A \) in

\[
\frac{1}{1 - 2z + z^{r+2}} \sim \frac{A}{1 - z/\rho}
\]

as \(z \to \rho \), which we get by L'Hpital's rule as

\[
A = \frac{-1/\rho}{-2 + (r+2)z^{r+1}} \bigg|_{z=\rho} = \frac{-1/\rho}{-2 + (r+2)\rho^{r+1}} = \frac{1}{2\rho - (r+2)(2\rho - 1)}.
\]

So we get the following asymptotic formulae, valid for \(n \to \infty \) and fixed \(r \):

\[
[z^n] \frac{1 - z^{\lfloor \frac{r}{2} \rfloor + 1}}{1 - 2z + z^{r+2}} \sim (1 - \rho^{\lfloor \frac{r}{2} \rfloor + 1})A\rho^{-n},
\]

\[
[z^n] \frac{1 - z^{\lfloor \frac{r-1}{2} \rfloor + 1}}{1 - 2z + z^{r+2}} \sim (1 - \rho^{\lfloor \frac{r-1}{2} \rfloor + 1})A\rho^{-n},
\]

\[
[z^n] \frac{1 - z^{r+1}}{1 - 2z + z^{r+2}} \sim (1 - \rho^{r+1})A\rho^{-n}.
\]

And now we turn to the instance where \(r \) is a random variable \(X \), and compute, as a showcase, the expected value, so we answer the question about the average value of the longest 1-run in palindromes, in the 3 respective models. As mentioned, this was basically done already by Knuth. When \(r \) gets large, the constant \(A \) may be replaced by 1, terms of the form \(\rho^r \) may be dropped, and in \(\rho^{-n} \), it is enough to use the approximation

\[
\rho^{-n} \sim 2^n(1 - 2^{-r-2})^n \sim 2^n \exp(-n/2^{r+2}).
\]

Furthermore, to get a probability distribution, we have to divide by \(2^n \), which is the number of binary words of length \(n \). So the probability that the parameter \(X \) is \(\leq r \) is in all 3 instances approximated by

\[
\exp(-n/2^{r+2}).
\]

For an expected value, one has to compute

\[
\sum_{r \geq 0} [1 - \exp(-n/2^{r+2})].
\]
This evaluation can be found in many texts ([2, 1, 4]); it is done with the Mellin transform, and the result is

\[
\log_2 n + \frac{\gamma}{\log 2} - \frac{3}{2} - \frac{1}{\log 2} \sum_{k \neq 0} \Gamma\left(\frac{2k\pi i}{\log 2}\right) e^{-2k\pi i \log_2 n}.
\]

Observe that the series in this expression represents a periodic function with small amplitude.

Asymptotically, thus, palindromes with middle letter 0 resp. 1 resp. no middle letter all lead to the same result.

References

